Archive for February, 2018

No Basis

Wednesday, February 7th, 2018

I had a conversation with a Marxist today. It became a bit heated on her side because she simply could not believe that I was unmoved by her arguments and was extremely frustrated with my explanation of the history of property, hierarchy and territorialism. She was particularly enraged about hierarchy and territorialism because they clearly originate in the animal kingdom and that presents a very difficult argument against her alleged desire to “live in the natural state of humanity” as our brains are hardwired for these things. That being the case there is no simple solution to the eternal question “Quis custodiet ipsos custodes?” and that really throws a wrench in the gears of the leadership tier of her hoped-for utopia.

Trying to turn the topic a bit to let her explore things on her own, I probed her a little more about labor-value theory and immediately hit a wall. I was trying to figure out why the conversation was so utterly unsatisfying until it dawned on me: she had never actually read Marx. She had no useful knowledge about philosophy at all, never having read any ancient, classical or even modern philosophers, scientists, psychologists, humanist thinkers, historians or economists.

She lacked any basis for recognizing a novel thought, much less being able to connect the thought at the leading edge of discourse back to its roots in a prior school of thought or even its relation to any other well-known concept. In fact, she didn’t know there were fundamental questions about whether knowledge is even possible, much less that this question divides philosophical tradition almost perfectly in two.

Through the encounter two things stuck out.

First, that she was so willing to promote violence as a reasonable tool for implementing Marx’s vision despite her not knowing anything serious about that vision and an accurate model of Marx’s vision actually lacking any economic theory whatsoever. That last bit didn’t phase her even a little. (And yes, you read that right, despite all the talk of “production” there is no theory to which a Marxist leader can refer to determine who should produce what when and how much is needed when. This should be terrifying to Marxists, especially in the absence of market feedback via price fluctuations, but they really seem not to care.)

Second, that despite her extreme, almost violent opposition to my positions, she wanted me to take her out to dinner next week. This was not her being reasonable, though, she just grew to hang on my words for some reason (though really, I didn’t say much in total word count). She started to like me, despite actually telling me at one point that I am “like the Nazis”. I usually get along well with women and like to think I nearly understand them, or at least some of them, but this was baffling. Then again, I haven’t dealt with many young Western women lately and clearly times are changing (she is in her mid-20’s, from France, and claims feminism is her religion; I am in my late-30’s, white living in Japan, and am unabashedly male and good at being in charge — this would be a disaster on every level).

I’m no philosopher — I’ve never even attended university — but it blows my mind that someone would commit so utterly and completely to a violent political philosophy without knowing what that philosophy was. This can only be described as a form of moral blindness (and not the good kind).

I can only imagine that most Marxists, whether or not they know much about what Marx actually proposed, have a similarly limited set of initial information against which to compare Marxist thought.

Confounding Beginner Question: What is an Erlang Atom and Why is it Useful?

Thursday, February 1st, 2018

Like other Erlangers, I tend to take the atom data type for granted. Coming from another language, however, you might be puzzled at why we have all these little strings that aren’t really strings.

The common definition you’ll hear most frequently is something like:

An atom is a label. Its only meaning is itself.

Well, that’s true, but that also sounds a bit useless to someone coming from Python or R or JavaScript or whatever. So let’s break that down: what is a “label” useful for in programs?

  • Variable names are labels.
  • Function names are labels.
  • Module names are labels.
  • The strings you use as keys in a key/value data structure are labels.
  • The enums and label macros you might use in C for semantically significant internal values are almost exactly like atoms

OK, so we use labels all the time, why don’t any of those other languages have atoms, though? Let’s examine those last two reasons for a moment for a hint why.

In Python strings are objects and while building them is expensive, hashing them can be done ahead of time as a cached operation. This means comparing two strings of arbitrary length for equality is extremely cheap, because it is reduced to a large integer comparison for equality. This is not true in, say, C or Erlang or Lisp unless you build your own data structure to carry around the pre-hashed data. In Python it is simple enough to say:

if 'foo' in some_dict:
  # stuff
else:
  # other stuff

In C, however, string comparison is a bit of a hassle and dealing with string data in a cross-platform environment at all can be super annoying depending the age of the systems you might be interacting with or running/building your code on. In Erlang the syntax of string comparison is super simple, but the overhead is not pre-paid like in Python. So what is the alternative?

We use integer values to represent keys that are semantically meaningful to the program at the time it is written. But integers are hard to remember, so instead of having magic numbers floating all around the place we typically have semantically significant integer values aliased from a text label as a macro. This is helpful so that I don’t have to remember the meaning of code like

if (condition == 42) launch_missiles();
if (condition == 86) eat_kittens();

Instead I can write code like:

#define UNDER_ATTACK    42
#define VILE_UNDERBEAST 86

if (condition == UNDER_ATTACK)    launch_missiles();
if (condition == VILE_UNDERBEAST) eat_kittens();

It is extremely common in programs to have variables or arguments like condition in the above example. It doesn’t matter whether your language has matching (like Erlang, Rust, logic languages, etc.) or uses explicit conditionals like the fake C example above — there will always be a huge number of micro datatypes that carry great semantic significance within your program and only within your program and it is as useful to be able to label these enumerated values in a way that the human coders can understand and remember as it is useful for the computer to be able to compare them as simple integers instead of going to the trouble of string comparison every time your code needs to make a decision (because string comparison entails an arbitrarily long sequence of integer comparisons every single time you compare two strings).

In C we use those macros like above (well, not always; C actually does have super convenient enums that work a lot like atoms, but didn’t when I started using it as a kid in the stone age). In Erlang we just use an atom right there in place. You don’t need a declaration or definition anywhere, the runtime just keeps track of these things for you.

Underneath the hood Erlang maintains a running table of atom label values and translates them to integer values on the way into the system and on the way out of the system. The integer each atom actual resolves to is totally unimportant to you, so Erlang abstracts that detail away, but leaves the machine comparing integer values instead of doing full-string comparisons all over the place.

“But Erlang maps don’t do string comparisons on keys!” you might say.

And indeed, you would be right. Because map keys might be any arbitrary value each key is hashed on the way in, and every time keys are compared the comparing term is hashed the same way, so the end comparison is super fast, but we have to hash the input value first for it to mean anything. With atoms, though, we have a shortcut, because we already know they are both unambiguous integer values throughout the system, and this is a slight win over having to hash first before comparing keys.

In other situations where the comparison values cannot be hashed ahead of time, like function-head matching, however, atoms are a huge win over string comparisons:

-module(atoms).
-export([foo/1, bar/1]).

foo("Some string value that I don't really recall") ->
    {ok, 1};
foo("Some string value that I don't really care about") ->
    {ok, 2};
foo("Where is my cheeseburger?") ->
    {ok, 3};
foo(_) ->
    {error, wonky_input}.

bar(dont_recall) ->
    {ok, 1};
bar(dont_care) ->
    {ok, 2};
bar(cheeseburger) ->
    {ok, 3};
bar(_) ->
    {error, wonky_input}.

I’ve slowed the clockspeed of the system so that we can notice any difference here in microseconds.

1> timer:tc(fun() -> atoms:foo("Some string value that I don't really care about.") end).
{16,{error,wonky_input}}
2> timer:tc(fun() -> atoms:foo("Where is my cheeseburger?") end).
{13,{ok,3}}
3> timer:tc(fun() -> atoms:foo("arglebargle") end).
{12,{error,wonky_input}}
4> timer:tc(fun() -> atoms:bar(dont_care) end).
{9,{ok,2}}
5> timer:tc(fun() -> atoms:bar(cheeseburger) end).                                      
{10,{ok,3}}
6> timer:tc(fun() -> atoms:bar(arglebargle) end).                                        
{10,{error,wonky_input}}

See what happened? The long string that varies only at the tail end from two options in the function head takes 16 microsecond to compare and return a value. The string that differs at the head is evaluated as a bad match for the first two options the moment the very first character is compared. The total mismatch is our fastest return because that string never need be traversed even a single time to know that it doesn’t match any of the available definitions of foo/1. With atoms, however, we see a pretty constant speed of comparison. That speed would not change at all even if the atoms were a hundred characters long in text, because underneath they are all just integer values.

Now take a look back and consider the return values defined for foo/1 and bar/1. They don’t return naked values, they return pairs where the first member is an atom. This is a pretty common technique in Erlang when writing either a library intended for 3rd party use or when defining functions that have side-effecty operations that might fail (here we have pure functions, but I’m just using this as an example). Remember, the equal sign in Erlang is both an assignment operator and an assertion operator, when calling a function that nests its return values you have the freedom to decide whether to crash the current process on an unexpected value or to handle the “error” (in which case for your program it becomes an expected condition and not an exception).

blah(Condition) ->
    {ok, Value} = foo(Condition),
    do_stuff(Value).

The code above will crash if the tuple {error, wonky_input} is returned, because the expected atom 'ok' does not match the actually returned atom ‘error’.

bleh(Condition) ->
   case foo(Condition) of
       {ok, Value}          -> do_stuff(Value);
       {error, wonky_input} -> get_new_condition()
   end.

The code above now does not crash on that error return value and instead moves on to get another condition to try out, because the error tuple matches one of the case conditions that is defined as a return value. All this can happen really fast because atoms comparisons are really integer comparisons, and that means we save a ton of processor time (and space) by avoiding string/list or binary comparisons all over the place.

In addition to atoms being a much nicer and dramatically more flexible version of global enumerated types that let us write code in a more natural style that uses normal-language labels for program semantics, it turns out that function and module names are also atoms. This is a really nice feature in itself, because it allows us to write highly dynamic code with a lot less confusion about what types both sides of a call needs to be as well as making the code easier to read. I can even implement my own version of apply/3:

my_apply(Module, Function, Args) ->
    Module:Function(Args).

Of course, there is a whole pile of reasons why you will never want to actually write a function like this in a real program, but that’s the sort of power we have without doing any type casting magic, introspection, or on-the-fly modification of our program, references or memory space.

Once you get used to using atoms and matching you’ll really start to miss them in other languages and wonder how you ever got along without them. Now run off and start writing some code to practice thinking with atoms. They will become natural to you before the day is out.